and which occurced in great profusion. It is very certain that systematic research in other parts of Northumberland and Durhan will produce many other interesting additions to the Counties' Fauna.

During the year, two more Longicorns have been imported, Cordylomera suturalis, Chev., with mahogany, and Cyllene crinicornis, Chev., in numbers, with lignum-vitæ from the West Indies.

Many rare beetles, for the most part recorded have also occurred, inchuding the following additions to the counties' list. Aleochara cumiculormm, Kr., from a badger's burrow, Spen banks, Co. Durham. A. succicola, Th., A.moerens, Gyll., and A.spadicea, Er., var. procera, Er., are in Mr. Gardner's collection from Hartlepool. Homalota lontmla, Heer, 11. subtilissima, Kr., in numbers, and a few examples of H. erilis, Er., 1I. pallens, Redt. (?), from sbingle, Winlaton Mill. H. aequata, Er., H. linearis, Gr., and H. pilicornis, Th., from beneath bark, Gibside. l'hilonthus cruentatus, Gmel., in regetable refuse, rare. Thinobius lon!fipemis, Heer, in shingle, Winlaton Mill. Homalium planmm, Pk., under bark, Derwent Valley and Tynedale. H. pineti, Th., under bark of a fir-log, Egglestone in Teesdale. Hapalaraea py!ymaea, Pk., Winlaton Mill. Colom latum, Kr., a single specimen from dead grass refuse in nest of mouse, Gibside. Eıuplectus si!matus, Reich., a single specimen; $\& \therefore$. minutissimus, Aub., not rare in shingle, Winlaton Mill. Micrurula melanocrphala, Marsh., very local, found in numbers early in the year on a certain clump of bird-cherry trees, Winlaton Mill. Meligethes serripes, Gyll., specimens evidently referable to this species from the flowers of bugle (Aju!a repitans) and bedge-nettle (Stachys). Enicmus fun!icola, Th., taken by my friend Mr. Gardner in Teesdale. Cartodere elon!fata, Curt., a solitary example in fungoid growth on a \log, Alnwick. Silranus similis, Er., a living specimen found floating in a plate of pineapple syrup; it may possibly have been brought in from the woods on my clothes. Emueartloon cornutun, Gyll., from a polyporus, Teesdale. Hypophlocus bicolor, Cl., Alnwick.

The Brachypterous Cryptina.

By ERNEST A. ELLIOTT, F.E.S.

Great difficulty is experienced in identifying Brachypterous forms of the subfamily Cryptinue, from the fact that the metathoracic costre and the areolet of the wing, which are among the most important characters made use of in defining the subdivisions, are, if not entirely wanting, yet different from the form typical of the group to which these insects individually belong. In the hope of rendering some assistance in this matter, I have prepared the following table, for females only. I have not found it possible to arrange them in the order of Mr. Morley's Ichmenmons of Britain, vol. ii. (1907), but do not consider this of any importance.

By a curious oversight Mr. Morley has given us an impossible description of the genus ()resbins, Marsh. Its author, in his original description (Ent. Mo. May., iii., 1867, p. 193), says of the basal segment: "basi latissimum, apicem versus gradatim angustatum." This is evidently to be understood in the Gravenhorstian sense, the postpetiole being the "pars antica," and thus the end of the segment
furthest from the thorax becomes the "base."* The formation of this segment in (Jresbius is shown by the illustration to be normal, and Marshall states that the genus differs from Aptesis only in the unicolorous antennæ. Hence it appears that, in Mr. Morley's table of the genera of the Phyyadenonini (Ichn. Brit., ii., pp. 2, 3) the first and last sections should be deleted, and after no. 21 should be inserted :-

Antennæ of female white-banded Microcraptus.
Antennæ of female unicolorous Oresbius.
The position of Apterophyyas parudowis, Bridg., is a matter of considerable difficulty. It certainly cannot be correctly placed in ''remnodes, because the distinctive character of that genus is the almost entire absence of a metanotum, the costa bounding the petiolar area closely approximating the base of the metathorax ; and in A. paradoxus the metanotum and the petiolar areas are of equal length. At the same time it must be acknowledged that the insect does not correspond with the published description of any known genus, and it would be highly undesirable to found a new genus upon a single specimen, which I am inclined to regard as abnormal.

As nothing has hitherto been known of the economy of C'remnodes atricapillus it is interesting to note that Mr. Morley has identified a specimen in Cameron's collection, bred from a Dipterous leaf-miner on primrose (cf. Ann. Scot. Nat. Hist., 1907, p. 90).

Table of Genera and Specibs.
(Numbers after species refer to pp. in Mr. Morley's work.)
(4.) 1. Wings wanting.
(3.) Э. Segments 2 and 3 connate, and occupying most of abdomen

Thaumatotypus, 239.
(2.) 3. Segments 2 and 3 normal. .

Pezomachos, 177.
(1.) 4. Wings present, but never fully developed.
(6.) 5. Terebra as long as abdomen; metathoracic areæ complete

Obisiphaga, 60.
(5.) 6. Terebra not more than half as long as abdomen; metathoracic area rarely complete.
(16.) 7. Terebra longer than basal segment.
(15.) 8. Penultimate tarsal joint bilobed ..
(12.) 9. Thorax entirely black.
(11.) 10. Anterior coxæ red S. incubitor, 271.
(10.) 11. Anterior coxæ black S. migrator, 275.
(9.) 12. Thorax not entirely black.
(14.) 13. Only scutellum red.. S. abbreviator, 278.
(13.) 14. Thorax entirely red var. hopei, 279.
(8.) 15. Penultimate tarsal joint not bilobed .. Plectochyptus grisescens, 9.
(7.) 16. Terebra not longer than basal segment.
(20.) 17. Terebra less than half basal segment.
(19.) 18. Metathorax sloping from base
(18.) 19. Metathorax not sloping from base; metanotum as long as petiolar area ..

Cremnodes atricapillus, 62.
(17.) 20. Terebra longer than half basal segment.
(22.) 21. Wings clouded, with hyaline fascia
(21.) 22. Wings without fascia.
(36.) 23. Area of metathorax complete
(27.) 24. Segments 2 and 3 occupying almost whole of abdomen.
(26.) 25. Thorax black

Cremnodes puradoxus, 62.
Spinola fulveolatus, 115.
Phygadedon, 71.

* "Segmentum primum . . . Pars antica, inter tubercula ista et margina apicalem segmenti sita (in Monographia Ichn. pedestrium minus apte area nuncupata) plurimis speciebus latior est parte postica."-Grav., I. E., i., 85 ; cf. Morl., I. E., ii., 3.

Notes from the Wye Valley: the Vanessids in 1907.

By J. F. BIRD.
This has not been a very good season from a collector's point of view, but we have found it interesting with regard to the Vanessids. Judging from ova and larvæ of Polyyonia c-albrm, found from the last day of March to the beginning of July, and larvae of A!lais wticae, in June and July, the ovipositing of the hybernated females of both these species appears to have been much protracted; the cause, no donbt, being the abnormally dull and cold weather we have experienced this year; the fine " butterfly days" so few and far between.

Polygonia c-album.-Only one hybernated specimen of P. c-album was observed in the spring, a female, which frequented our garden on March 31st and April 1st, when I watched it ovipositing on Ribes (vide vol. xix., p. 125). I have already mentioned (p. 126) the length of time it took for the first two larvæ, that hatched from ova we obtained, to eat their way out from their shells, and it seems, from further observations, that about twelve hours is the average time for this operation. Perhaps the table on p. 38, showing dates of hatching, moulting, etc., of some of these will be found of interest.

I should like to have added the sex in each case, to compare with the number of keels of the ovum, but do not feel sufficiently certain that I can tell. I fancy it is easier to distinguish the sex of specimens met with in the natural state.

Emergence generally takes place in the early morning, but a few we have bred came out at other times of the day, though rarely at night.

Besides obtaining ova in April, in May we also found, on our

